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Inapproximability Results for Guarding Polygons
and Terrains1

S. Eidenbenz,2 C. Stamm,2 and P. Widmayer2

Abstract. Past research on art gallery problems has concentrated almost exclusively on bounds on the
numbers of guards needed in the worst case in various settings. On the complexity side, fewer results are
available. For instance, it has long been known that placing a smallest number of guards for a given input
polygon is NP-hard. In this paper we initiate the study of the approximability of several types of art gallery
problems.

Motivated by a practical problem, we study the approximation properties of the three art gallery problems
VERTEX GUARD, EDGE GUARD, and POINT GUARD. We prove that if the input polygon has no holes, there is a
constant δ > 0 such that no polynomial time algorithm can achieve an approximation ratio of 1+δ, for each of
these guard problems. We obtain these results by proposing gap-preserving reductions from 5-OCCURRENCE-
MAX-3-SAT.

We also prove that if the input polygons are allowed to contain holes, then these problems cannot be
approximated by a polynomial time algorithm with ratio ((1 − ε)/12) ln n for any ε > 0, unless NP ⊆
TIME(nO(log log n)), where n is the number of vertices of the input polygon. We obtain these results by proposing
gap-preserving reductions from the SET COVER problem.

We show that this inapproximability for the POINT GUARD problem for polygons with holes carries over
to the problem of covering a 2.5-dimensional terrain with a minimum number of guards that are placed at a
certain fixed height above the terrain. The same holds if the guards may be placed on the terrain itself.

Key Words. Art gallery, Visibility problems, Inapproximability, Gap-preserving reductions, Terrains,
Telecommunications.

1. Introduction

1.1. Motivation. Triggered by the deregulation of the telecommunications markets
all over the world, and recently especially in Europe, companies are planning to set up
networks for wireless communication. Typically, such a network consists of transmission
stations (antennas) that receive and send signals. The set of antennas needs to cover a
specific geographic region in its entirety. Putting up antennas is very costly, and hence
mobile phone companies aim at placing a minimum number of antennas that cover a
given region. Since the traditional way of erecting antenna towers on the ground suffers
from a number of obvious disadvantages, a novel approach is to put antennas up in the
air: balloons float at a certain fixed height and are held in geo-stationary position. The
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problem of finding a smallest set of balloons at a height of 20 km above sea level that
cover Switzerland is indeed the practical motivation behind our theoretical study.

1.2. The Problem. In the abstract version of this problem we are given a terrain,
described as a finite set of points in the plane together with a triangulation, and a height
value associated with each point (this is also called a triangulated irregular network
(TIN), see, e.g., [16]). We are further given a desired antenna height that is above the
highest point of the terrain. The objective is to find a smallest set of antenna points
at the given height that covers the given terrain, that is, each point on the terrain must
be visible from at least one of the antenna points. Visibility is defined on the basis of
straight lines-of-sight: two points above the terrain are mutually visible if their connecting
straight line segment runs entirely above (or on) the terrain. This concept models simple
electromagnetic wave propagation at high frequencies (GHz), ignoring effects such as
reflection and refraction.

1.3. Related Problems. The described terrain covering problem can be seen to belong
to quite a large family of geometric covering and guarding problems that have been
studied for more than two decades. Legend has it that during a conference in 1976,
Victor Klee started the study by posing the following problem, which today is known as
the original art gallery problem: How many guards are needed to see every point in the
interior of an art gallery? In the abstract version of this problem, the input is a simple
polygon in the plane, representing the floorplan of the art gallery, and visibility is of
course limited to the interior of the polygon. The variations of this polygon guarding
problem that have been investigated can be classified as to where the guards may be
positioned (anywhere, or in any one of a few distinguished locations), what kind of
guards are to be used (single points versus sets of points, such as line segments, and
guards in stationary positions versus mobile guards), whether only the boundary or all
of the interior of the polygon must be guarded, what the assumptions are on the input
polygons (such as being simple or orthogonal). Many upper and lower bounds on the
number of necessary guards are known for specific settings, while comparatively few
papers study the computational complexity of finding good positions for the guards,
given a polygon. For more details, see any of several surveys on the general topic of art
galleries [18], [19], [23], [25]. In this section we only briefly summarize some relevant
previous results and give pointers to the literature; we give the exact definitions of the
problems we study in Section 2. For an up-to-date extensive survey on the state of the
art, consult [25].

As to the computational complexity of polygon guarding problems, it is known that
the problem of covering a polygon with a minimum number of convex polygons (that
may overlap) is NP-hard for input polygons with holes [20], and also for polygons
without holes [8]. The POINT GUARD problem asks for a smallest set of points that
together see a given polygon in its entirety; it is equivalent to the problem of cov-
ering a polygon with a minimum number of star-shaped polygons, and this is also
NP-hard for input polygons with [20] and without [17] holes. The two problems VER-
TEX GUARD and EDGE GUARD (where the guards that together see a given polygon
in its entirety are constrained to be vertices and edges of the polygon, respectively)
are NP-hard even for input polygons without holes [17]. Approximation algorithms for



Inapproximability Results for Guarding Polygons and Terrains 81

VERTEX GUARD and EDGE GUARD which achieve approximation ratios of O(log n) are
also known [13]. The approximation algorithms work for polygons with and without
holes.

1.4. Aims and Scope of this Paper. Urrutia points out that approximability results for
polygon guarding problems are dearly needed [25]. The approximability of a problem is
interesting from both sides, the upper bound and the lower bound. Upper bounds come
from approximation algorithms that achieve a certain approximation ratio, as has been
done for VERTEX GUARD and EDGE GUARD [13]. Lower bounds on the approximation
ratio are the subject of this paper.

In Section 2 we give exact definitions of the problems we study. In Section 3 we
obtain results for VERTEX GUARD, EDGE GUARD, and POINT GUARD for input polygons
without holes that prove that for each of these problems there is a constant δ > 0 such
that no polynomial time algorithm can achieve an approximation ratio of 1 + δ. We
obtain these results by proposing gap-preserving reductions [2] from 5-OCCURRENCE-
MAX-3-SAT that are based on reductions originally used to prove the NP-hardness of
these problems [17].

We prove in Section 4 that if the input polygons are allowed to contain holes, then these
problems cannot be approximated by a polynomial time algorithm with ratio (1−ε) 1

12 ln n
for any ε > 0, unless NP ⊆ TIME(nO(log log n)), where n is the number of vertices of
the input polygon. We obtain these results by proposing gap-preserving reductions from
the SET COVER problem (i.e., a restricted version of SET COVER, which corresponds to
DOMINATING SET).

We show in Section 5 that our proof for the POINT GUARD problem for polygons with
holes carries over to the problem of covering a 2.5-dimensional terrain with a minimum
number of guards that are placed either at a certain fixed height above the terrain or on
the terrain itself.

After presenting all of these inapproximability results, we summarize the approx-
imability results known for these problems in Section 6. Finally, we show which of our
results are optimum and which results might be improved and draw some conclusions
in Section 7.

2. Preliminaries

DEFINITION 1. A polygonal chain P is an ordered sequence of points p1, . . . , pn , n ≥ 3,
in the plane, called the vertices of P , together with the set of line segments joining pi

to pi+1, i = 1, . . . n − 1, called the edges of P . A polygonal chain is called closed if
p1 = pn; otherwise it is called open. For a closed polygonal chain, we sometimes refrain
from repeating the first vertex p1, and we end the chain with pn−1.

DEFINITION 2. A polygonal chain is called simple if the only intersections of edges are
those at common endpoints of consecutive edges. A simple, closed polygonal chain P
divides the plane into two regions, the interior and the exterior of P , where the exterior
is the unbounded region and the interior is the bounded region (it does not contain a line
or even a half-line).
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DEFINITION 3. The interior of a simple, closed polygonal chain P , together with P ,
is called a simple polygon without holes. Its boundary δP is just P . For simplicity, the
polygon is denoted by P as well.

DEFINITION 4. A polygon is the union of a finite number of simple polygons. A polygon
P is called connected, if any two points of P can be joined by a polygonal chain that
belongs to P . A connected polygon P is called simply connected if every polygonal
chain between two boundary points that does not pass through any other boundary point
divides P . A connected polygon that is not simply connected is called a simple polygon
with holes.

Note that a simple polygon with holes P can be represented by a finite number k of
polygonal chains P1, . . . , Pk that represent its boundary, where P1 is the outer boundary
of the polygon, and the Pi , for i = 2, . . . , k, are the boundaries of the holes. For this
representation to work, we require that Pi ⊆ P1 for i = 2, . . . , k and that Pi ∩ Pj = ∅
for i 
= j and i, j = 2, . . . , k. The interior of P is the set difference between P1

and the interiors of P2, . . . , Pk viewed as simple polygons without holes. Note that the
boundaries of P2, . . . , Pk belong to P .

Since we only deal with connected polygons in the following, we use the term polygon
for a connected polygon, with or without holes.

Among the multitude of notions for visibility between two points in a polygon, we
use the following:

DEFINITION 5. Let P be a polygon, and let A and B be points belonging to P . Points
A and B are mutually visible with respect to P , if the straight line segment connecting
A and B belongs to P . We also say that A and B see each other, that A is visible from
B, and that A sees B. For a set Q and a set S of points of P , we say that Q is visible
from S if for each point q ∈ Q there is a point s ∈ S that sees q.

Note that visibility is symmetric for single points, but not for sets of points: while a
set Q may be visible from a set S of points with respect to a polygon P , it may not be
true that S is visible from Q. We therefore call Q the set of guarded points and S the set
of guard points (or simply guards).

We now define the problems we are studying.

DEFINITION 6. Let P be a simple polygon without holes. The problem VERTEX GUARD

(VG) is the problem of finding a minimum subset S of (the set of) vertices of P such
that the boundary of P is visible from S. The vertices in S are called vertex guards.

Note that, as usual, a minimum subset of a set denotes a subset of smallest cardinality
among all candidate subsets.

DEFINITION 7. Let P be a simple polygon without holes. The problem EDGE GUARD

(EG) is the problem of finding a minimum subset S of edges of P such that the boundary
of P is visible from the points in S. The edges in S are called edge guards.
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DEFINITION 8. Let P be a simple polygon without holes. The problem POINT GUARD

(PG) is the problem of finding a minimum set S of points belonging to P such that the
boundary of P is visible from S. The points in S are called point guards.

VG, EG, and PG can also be defined such that all of the interior (and not only the bound-
ary) of the input polygon P must be visible from at least one guard (see [17]). We denote
the corresponding problems by VGI, EGI, PGI, where the letter “I” stands for “interior.”
Finally, we can define these problems for input polygons with (instead of without) holes.
We denote this by adding a letter “H,” if we allow the input polygons to contain holes,
i.e., VGH, EGH, PGH, VGIH, EGIH, PGIH as opposed to VG, EG, PG, VGI, EGI, PGI.

We can define similar problems when the input structure is a terrain rather than a
polygon.

DEFINITION 9. A terrain T is a two-dimensional surface in three-dimensional space,
represented as a finite set of vertices in the plane, together with a triangulation of their
planar convex hull, and a height value associated with each vertex. By a linear interpo-
lation in between vertices, this representation defines a bivariate, continuous function.
The corresponding surface in space is also called the 2.5-dimensional terrain. A terrain
divides three-dimensional space into two subspaces, i.e., a space above and a space below
the terrain, in the obvious way.

For simplicity, we describe the terrain problems in the Cartesian x–y–z space, where
the z-value denotes the height of terrain points.

DEFINITION 10. Let T be a terrain, and let A and B be two points in space above or
on T . Point A is visible from point B with respect to T if the straight line segment
connecting A and B is entirely on or above T .

For antennas, this definition does not model all aspects of electromagnetic wave
propagation exactly, since, e.g., the signal of an antenna gets weaker as it propagates,
and the signal is reflected on a rocky wall. However, for the practical problem that
motivates this study, the straight line-of-sight (LOS) approach provides a satisfactory
approximation of reality.

For a terrain, we consider the following problems:

DEFINITION 11. Let T be a terrain. The problem VERTEX GUARD ON TERRAIN (VGT)
is the problem of finding a minimum subset S of vertices of T such that T is visible
from S.

DEFINITION 12. Let T be a terrain. The problem POINT GUARD ON TERRAIN (PGT) is
the problem of finding a minimum set S of points on T such that T is visible from S.

DEFINITION 13. Let T be a terrain, and let h be a height value, such that the plane z = h
lies entirely above (or partially on) T . The problem GUARDS AT FIXED HEIGHT OVER

TERRAIN (FHT) is the problem of finding a minimum set S of points in space at height
h such that T is visible from S.
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We now define three additional, similar terrain guarding problems. The reason is that
our inapproximability results for guarding terrains will be formulated for terrain problem
versions with the additional restriction that each triangle in the triangulation of T must be
visible from a single point in the guard set S; that is, guards are not allowed cooperatively
to see a triangle in T ’s triangulation, contrary to the problem versions above. We denote
these problem versions with an extra letter “R” that stands for “restricted.” Hence, we
get terrain guarding problems VGTR, PGTR, and FHTR.

We prove our inapproximability results by proposing reductions from the following
problems.

DEFINITION 14. Let 	 be a boolean formula given in conjunctive normal form, with
each clause consisting of at most three literals and with each variable appearing in at
most five clauses. The problem 5-OCCURRENCE-MAX-3-SAT consists of finding a truth
assignment for the variables of 	 that satisfies as many clauses as possible.

5-OCCURRENCE-MAX-3-SAT is MAXSNP-complete [21], which means that there is
a constant δ > 0 such that 5-OCCURRENCE-MAX-3-SAT cannot be approximated by
a polynomial time algorithm with a ratio 1 + δ unless NP = P . (It also means that
there exists a polynomial time approximation algorithm for the problem that achieves a
constant ratio.) Let APX be the class of optimization problems that can be approximated
by polynomial time algorithms with a constant ratio (see [6], [7], [15], and [24] for
details on the relationship of these two complexity classes). 5-OCCURRENCE-MAX-3-
SAT is AP X -complete as well.

DEFINITION 15. Let E = {e1, . . . , en} be a finite set (called universe) of elements, and
let S = {s1, . . . , sm} be a collection of subsets of E , i.e., sj ⊆ E for 1 ≤ j ≤ m. The
problem SET COVER (SC) is the problem of finding a minimum subset S′ ⊆ S such
that every element ei ∈ E , 1 ≤ i ≤ n, belongs to at least one subset in S′. For ease of
discussion, let the elements in E and the subsets in S have an arbitrary, but fixed, order,
denoted by the index.

DEFINITION 16. Let G = (V, E) be an undirected graph with n vertices V = {v1, . . . ,

vn} and edges E . The problem DOMINATING SET consists of finding a minimum set S′

of vertices such that each vertex vi ∈ V has at least one neighboring vertex in S′, i.e.,
for each vertex vi ∈ V , there exists a vertex vj ∈ S′ with (vi , vj ) ∈ E .

SET COVER and DOMINATING SET can be approximated in polynomial time with a
ratio of 1 + ln n by a simple greedy algorithm [4], [14], but it cannot be approximated
by any polynomial time algorithm with a ratio of (1 − ε) ln n, for any ε > 0 unless
NP ⊆ TIME(nO(log log n)), where n is the number of elements for SET COVER and the
number of vertices in the graph for DOMINATING SET [4], [12].

3. Inapproximability Results for Guarding Polygons without Holes. In this section
we propose a reduction from 5-OCCURRENCE-MAX-3-SAT to PG, analyze it, and show
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that it is gap-preserving. This implies that PG is APX-hard. We also show that APX-
hardness follows for the problems VG, EG, VGI, EGI, and PGI.

3.1. Construction of the Reduction. We present the construction for PG. Suppose we
are given an instance I of 5-OCCURRENCE-MAX-3-SAT. Let I consist of n variables
x1, . . . , xn and of m ≤ 5

3 n clauses c1, . . . , cm . Taking instance I as input, we construct
a polygon P , which is an instance I ′ of PG.

Overview. The polygon P contains six different kinds of basic units, called patterns.
These are called literal, clause, variable, ear, body, and spike patterns. Each pattern is
a polygon, which will be part of the final polygon P . We obtain the final polygon by
taking the union of all patterns. Each pattern (except for the body pattern) contains a
distinguished tuple.

DEFINITION 17. A distinguished tuple (pi , pj , pk, pl) of a pattern is formed by the four
vertices pi , pj , pk, pl of the pattern with the following properties:

– pi and pj are neighboring vertices (i.e., j = i + 1 or j = i − 1).
– Any guard that sees an arbitrarily small part of the edge from pi to pj , which includes

vertex pi , must lie inside or on the boundary of the pattern, even if we consider the
edges of the pattern, which form the path between the vertices pk and pl (not taking
the route that includes vertex pi ), to be transparent.

As an example, consider the polygon in Figure 2, in which (q6, q5, q8, q1) is a dis-
tinguished tuple. The fact that the edge from q1 to q8 is transparent is indicated by a
dashed line. Polygon components will be composed by attaching them to each other
at transparent edges; these edges will, hence, disappear in the composition, and their
transparency indicates just this.

DEFINITION 18. Let (pi , pj , pk, pl) be a distinguished tuple of a pattern. Then an ar-
bitrarily small part of the edge from pi to pj starting at pi and going toward pj is called
a distinguished arrow.

Distinguished tuples and distinguished arrows will help us define an algorithm that
obtains a truth assignment for the variables of I , if it is given a solution (i.e., a set of
guards) of I ′.

The reduction works as follows: For each literal, we construct a literal pattern, each
of which contains a vertex T lit and a vertex F lit, which corresponds to the truth value
of the literal, if a guard sits there. Three literal patterns form a clause pattern in such a
way that the clause pattern can only be guarded by a minimum number of guards, if at
least one literal in the clause is true. We construct a variable pattern for each variable,
which contains a vertex T var and a vertex Fvar, which corresponds to the truth value of
the variable. Finally, spike patterns are used to connect variable and literal patterns in
such a way that a minimum number of guards is only possible, if the truth values are
assigned consistently.

We first introduce the literal, clause, variable, ear, and body patterns. We then show
how these patterns are put together, and finally we define spike patterns.
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Fig. 1. Literal pattern.

Literal pattern. Let lj (ci ), for j = 1, . . . , 3 and i = 1, . . . , m, denote the j th literal of
the i th clause. Note that lj (ci ) = xk or lj (ci ) = ¬xk for some k = 1, . . . , n. For each
literal lj (ci ), we construct a literal pattern as shown in Figure 1. The literal pattern is
the polygon defined by the points p1(lj (ci )), . . . , p6(lj (ci )), given in counterclockwise
order as shown in Figure 1. Whenever it is clear which literal we are talking about, we
will denote vertex pk(lj (ci )) simply by pk , omitting the argument, as done in Figure 1.
The edge from p6 to p1 is not part of the final polygon, but serves as an interface to the
outside of the literal pattern. We will lose this edge when we form the union of the literal
pattern with a clause pattern. As before, the transparent edge from p1 to p6 is drawn as a
dashed line. All other edges in the literal pattern are part of the final polygon. The points
p4, p5, p1 are collinear. Note that a guard at point p1 or point p5 sees all of the interior
of the literal pattern. The final construction will be such that a guard at point p1 implies
that the literal is true and a guard at point p5 implies that the literal is false. We, therefore,
call point p1(lj (ci )) simply T lit(lj (ci )); similarly, p5(lj (ci )) is called F lit(lj (ci )). Note
that (p4, p3, p1, p6) is a distinguished tuple. The distinguished arrow (p4, p3) is marked
by an arrow in Figure 1.

Clause pattern. For every clause ci , we construct a clause pattern as shown in Figure 2.
The clause pattern for ci is the polygon defined by the vertices q1(ci ), . . . , q8(ci ). Vertices
q6, q7, q2, and q3 are collinear. The tuple (q6, q5, q1, q8) is a distinguished tuple.

We form the union of the clause pattern of clause ci and the three literal patterns
l1(ci ), l2(ci ), and l1(ci ) as indicated in Figure 3. Note that this is done in such a way that
a guard at vertex T lit of any of the three literals sees the distinguished arrow of the clause

Fig. 2. Clause pattern.
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Fig. 3. Union of clause pattern and literal patterns.

pattern, while a guard at a vertex F lit of any literal pattern cannot see the distinguished
arrow of the clause pattern.

Variable pattern. For every variable xk , we construct a variable pattern as shown in
Figure 4. The variable pattern is the polygon defined by the vertices r1(xk), . . . , r11(xk).
We call the polygon defined by the vertices r1, r2, r3, r4 the TRUE leg of the variable
pattern and the polygon defined by r5, r6, r7, r11 the FALSE leg of the variable pattern.
The vertices r9, r10, r1 are collinear, and so are vertices r7, r8, r10, r11, and also ver-
tices r1, r4, r5, r8. The shape of the variable pattern can be changed slightly (as will be
done in the final construction), as long as the collinearities are maintained. The tuple
(r9, r8, r1, r11) is a distinguished tuple.

In the final polygon it will turn out that a guard sits at point r1 if the variable is
assigned the value true, and it sits at point r5 if the variable is false. Therefore, we define
T var(xk) := r1(xk) and Fvar(xk) := r5(xk).

Ear pattern. The ear pattern is necessary for technical reasons. Its use will become
evident in the analysis of the reduction. An ear pattern is the same as a literal pattern.
However, it is not associated with any literal. We use the same numbering as for the
literal pattern and denote the vertices of the ear pattern by wk for k = 1, . . . , 6.

Body pattern. The body pattern is a rectangle with vertices b1, . . . , b4. These vertices
are shown in Figure 5.

Forming the union of the components. We put all pieces together as shown in Figure 5.
The legs of the variable patterns are such that a guard at point w1 sees all the legs of the
variable patterns. We call the polygon obtained at this stage P ′.

Fig. 4. Variable pattern.
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Fig. 5. Putting the pieces together.

Spike patterns. A spike pattern s is a triangle shaped polygon with some additional
vertices on the edges. In the final polygon, there will be one spike pattern for each vertex
T lit and F lit, which are of slightly different types. Figure 6(a) shows the type of spike
patterns for vertices T lit, which we call TRUE spike pattern; Figure 6(b) shows the type
of spike patterns for vertices F lit, which we call FALSE spike pattern. The spike pattern
s is the polygon with vertices s1, . . . , s5, (s6). We have the following collinearities:

– Vertices s2, s3, s4 are collinear.
– Vertices s2, s1, (s6), s5 are collinear.

Fig. 6. (a) TRUE spike pattern; (b) FALSE spike pattern.
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Fig. 7. Spikes patterns for a positive literal.

The tuple (s2, s3, s1, s3) is a distinguished tuple, if we change the definition in such a
way that the edge from s4 to s5 is not transparent, as indicated in Figure 6 and in such a
way that the view of a guard that is located on the extension of the line from s2 through
s4 is blocked by the vertex s4.

Adding spikes to the construction. We form the union of the spikes with the polygon
P ′ as follows: We construct for each literal lj (ci ) in each clause two spike patterns (one
TRUE and one FALSE spike pattern) as shown in Figures 7 and 8.

Figure 7 is for the case, when literal lj (ci ) is positive (i.e., lj (ci ) = xk , for some k). In
this case we have a TRUE spike pattern s(T lit(lj (ci )), Fvar(xk)), which connects vertex
T lit of the literal pattern lj (ci ) with vertex Fvar of the variable pattern xk , and a FALSE
spike pattern s(F lit(lj (ci )), T var(xk)), which connects vertex F lit of the literal pattern
lj (ci ) with vertex T var of the variable pattern xk .

Figure 8 is for the case when literal lj (ci ) is negative (i.e., lj (ci ) = ¬xk , for some
k). In this case we have a TRUE spike pattern s(T lit(lj (ci )), T var(xk)), which connects
vertex T lit of the literal pattern lj (ci ) with vertex T var of the variable pattern xk , and a
FALSE spike pattern s(F lit(lj (ci )), Fvar(xk)), which connects vertex F lit of the literal
pattern lj (ci ) with vertex Fvar of the variable pattern xk .

For each TRUE spike pattern s, we have the following, where p6 and T lit are vertices
of the corresponding literal pattern:

– s4 = T lit.
– s4, s5, and p6 are collinear.
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Fig. 8. Spike patterns for a negative literal.

For each FALSE spike pattern s, we have the following, where p6 and T lit are vertices
of the corresponding literal pattern:

– s5 = F lit.
– s4 = p6.
– s4, s6, and T lit are collinear.

For each spike pattern s(T lit, Fvar) or s(F lit, Fvar) we have the following collinearities,
where q7, q8, and Fvar are vertices of the corresponding variable pattern:

– s1, Fvar, s5 are collinear.
– q7, s1, s3, q8 are collinear.

For each spike pattern s(T lit, T var) or s(F lit, T var) we have the following collinearities,
where q3, q4, and T var are vertices of the corresponding variable pattern:

– s1, T var, s5 are collinear.
– q3, s1, s3, q4 are collinear.

As a result, we obtain the polygon P , which is the instance I ′ of PG.

Feasibility of the construction. Remember that, in order to see an arbitrarily small part
of the edge from s2 to s3 including s2 of each spike pattern s, a guard must lie in the
interior or on the boundary of s, because (s2, s3) is a distinguished arrow.

In order to prove our inapproximability result for PG, we must ensure that the fol-
lowing holds:
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Fig. 9. Detailed construction.

LEMMA 1. Instance I ′ of PG (i.e., the polygon P) can be constructed from the 5-
OCCURRENCE-MAX-3-SAT instance I in such a way that no three spike patterns that
connect literal patterns to three different legs (of the variable patterns) intersect in a
common point.

PROOF. We prove the lemma by giving a detailed description of how this can be
achieved. An overview of the construction is given in Figure 9.

We start with the first literal pattern l1(c1). First, fix vertex s5(T lit(l1(c1)), ·) of the
TRUE spike pattern on a horizontal line h. Then set vertex T lit(l1(c1)) at a distance a(I )
to the left of s5(T lit(l1(c1)), ·) on the horizontal line h. Fix vertex s6(F lit(l1(c1)), ·) of
the FALSE spike pattern at a constant distance to the left of T lit(l1(c1)) on h, then set
vertex s4(F lit(l1(c1)), ·) at distance a(I ) to the left of s6(F lit(l1(c1)), ·) on h. Then fix
vertex s5(T lit(l2(c1)), ·) of the TRUE spike pattern of the second literal pattern at constant
distance to the left of s4(F lit(l1(c1)), ·) on h and repeat the procedure for all literals.

Note that a(I ) depends on the instance (i.e., a = a(I )). Choose w1 (of the ear pattern)
at a constant distance to the left of the point s5(F lit(l3(cm)), ·) (of the leftmost literal)
and at distance a′(I ) below the line h.

Assume that the variable patterns for the variables x1, . . . , xk−1 have already been
constructed, that the vertices T var of all of these variable patterns lie on the same hori-
zontal line h′, which is at constant distance from h, and that the vertices r2, r3, r6, r7 all
lie on the same horizontal line h′′, which is at distance a′′(I ) from h′. We show how to
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construct the next variable pattern for variable xk . We determine point T var(xk) of the
variable pattern as follows:

Determine the rightmost of the (at most five) literal patterns that is a literal of xk . We
assume that it is a negative literal lj (ci ). (The case where it is a positive literal can be
treated similarly.)

Set vertex T var(xk) on the horizontal line h′ to the left of all the variable patterns
already constructed in such a way that there exist no areas where two spike patterns
connecting literals with two different legs of variable patterns intersect, to the left or on
the line from T var(xk) to s5(T lit(lj (ci )), T var(xk)).

The intersection of the line h′′ with the line from w1 through T var yields vertex r2.
Fix r3 at a constant distance to the left of r2 on h′′ and fix some (auxiliary) point paux at
a constant distance to the left of r3 on h′′. The intersection of the line from s5 through
T var with the line from w1 to paux yields vertex s2; it yields vertex s1 if intersected with
the line from w1 to r3 . Intersecting the line from w1 to paux with the line from T lit to
s2 gives vertex s3. Thus, we have constructed the TRUE leg with the first spike pattern.
Now, construct all remaining spike patterns for the leg. Note that their vertices s2 are
strictly below vertex s2 of the first spike pattern constructed. Also note that the distance
a(I ) must be chosen small enough such that no two spike patterns intersect to the left of
the line from r3 to w1.

We construct the FALSE leg in a similar way, however, we need an auxiliary point
p′

aux, which is set on the horizontal line h′ in such a way that there exist no areas where two
spike patterns connecting literals with two different legs of variable patterns intersect, to
the left or on the line from p′

aux to the vertex s5 (or s6) of the spike pattern that connects
the rightmost literal pattern that represents a literal of the variable. Let v be a vertical
line at some constant distance to the left of p′

aux. Vertex Fvar is the intersection point of
v with either the line from s5 (or s6) through p′

aux or the line from T var through vertex s3

of the topmost spike pattern in the TRUE leg, whichever is closer to the horizontal line
h′. The remaining vertices of the leg and the spike patterns are then constructed as in the
TRUE leg.

The variable pattern can now be completed by just observing the required collineari-
ties.

Once we have constructed all variable patterns, we need to construct the literal pat-
terns. For each literal, proceed as follows:

Let v′ be a vertical line at some constant distance to the right of vertex s6 of the
FALSE spike pattern of the literal. Vertex F lit is the intersection of v′ with the line from
s1 through s6 of the FALSE literal pattern. Constructing the remaining vertices of the
literal pattern is straightforward by observing the required collinearities.

We complete the clause pattern in a straightforward manner, observing all collinear-
ities and the requirement that a guard at a vertex F lit of some literal pattern may not see
the distinguished arrow of the corresponding clause pattern. Vertices q1 and q8 of each
clause pattern are on the same horizontal line as w1, which is at distance a′(I ) from
line h. Note that a′(I ), therefore, must be chosen small enough such that the polygonal
chains from q1 to q4 and from q5 to q8 do not intersect any spike patterns.

We complete the construction as indicated in Figure 5.
An analysis reveals that the coordinates of all points can be computed in polynomial

time; some coordinates require a polynomial number of bits. The analysis is similar to the
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Fig. 10. Different types of guard moves.

analysis for PGH, which is given in full detail in Section 4. Therefore, the construction
is polynomial in the size of the input.

3.2. Transformation of a Feasible Solution. We describe how to obtain an assignment
of the variables of the satisfiability instance (i.e., a solution of I ), given a feasible solution
of the corresponding PG instance I ′. We move guards in such a way that the set of distin-
guished arrows that a guard sees changes in only one of two ways: The first possibility
is that the set remains the same or contains some additional distinguished arrows. The
second possibility is that some distinguished arrows are removed from the set, but then
it is ensured that some other guards see the distinguished arrows that were removed. The
guards are moved as follows (we have illustrated some of these movements in Figure 10):

– Determine which guard is inside the ear pattern w1, . . . , w6 (see Figure 5) and move
this guard to w1 as indicated at ©1 in Figure 10.

– For each literal pattern, determine which guard sees the distinguished arrow (such a
guard must be inside the literal pattern). If this guard is at vertex F lit, then leave it
there, otherwise, move it to vertex T lit as indicated at ©2 in Figure 10.

– If there is a guard at both vertices T lit and F lit of the literal pattern, move the guard
at F lit along the edge of the FALSE spike pattern toward vertex s2 to the vertex Fvar

or T var of the corresponding variable pattern as indicated at ©3 in Figure 10; note that
the guard at T lit does not move.

– If there is more than one guard at some vertex T lit (F lit), move all but one guard along
the edge of the TRUE (FALSE) spike pattern toward vertex s2 to the vertex Fvar or
T var of the corresponding variable pattern.

– For each clause pattern, move any guard that sees the distinguished arrow of the clause
pattern and lies in a TRUE spike pattern to the vertex T lit that is on the boundary of
the spike pattern.

– For each clause pattern, consider a guard g that sees the distinguished arrow of the
clause pattern and lies in a FALSE spike pattern. If there already is a guard g′ at vertex
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F lit of the spike pattern, then move the guard g to vertex T lit, otherwise, move the
guard g to vertex F lit.

– For each variable pattern, move the guard that sees the distinguished arrow of the
variable pattern to vertex T var, if it also lies in a spike pattern that contains vertex T var,
and move it to point Fvar, otherwise, as indicated at ©4 in Figure 10.

– Move all guards that lie in a spike pattern but do not see the distinguished arrows of
any literal or clause pattern to vertex T var or Fvar that is contained in the spike pattern.

– If a guard sees the distinguished arrows of two spike patterns that connect literals to
two different legs of variable patterns, add a guard and move one guard each to the two
vertices T var or Fvar of the variable patterns that lie on the boundary of the two spike
patterns as indicated at ©5 in Figure 10. (Note that because of Lemma 1, no guard can
see the distinguished arrows of three spike patterns that belong to three different legs.)

– Guards that do not see any distinguished arrows are moved to any point T var or Fvar

of any variable pattern, if there is no guard there already.

This procedure is iterated until all guards are at their final position. The solution
obtained after moving and adding guards as indicated is still feasible. To see this, note that
after this procedure there is exactly one guard in each literal pattern at either point F lit or
T lit. In each clause pattern ci there is at least one guard at either T lit(l1(ci )), T lit(l2(ci )), or
T lit(l3(ci )). Therefore, all literal and clause patterns are guarded. The remaining polygon
(except for parts of the spike patterns) is guarded by the guard at point w1 of the ear.
Finally, the spike patterns are guarded, since all guards that saw the distinguished arrow
of a spike pattern have been moved only within the spike pattern. Where such a guard
saw two distinguished arrows of two spike patterns, we have added a guard.

We are now ready to set the truth values of the variables. For each variable pattern
xk , if there is a guard at point Fvar(xk) and no guard at point T var(xk), let xk be false. If
there is a guard at point T var(xk) and no guard at point Fvar(xk), let xk be true. If there
is a guard at both T var(xk) and Fvar(xk), then set xk in such a way that a majority of the
literals of xk become true.

3.3. Analysis of the Reduction. We first prove two lemmas that will help us prove the
APX-hardness of PG.

LEMMA 2. If an instance of 5-OCCURRENCE-MAX-3-SAT with n variables and m ≤ 5
3 n

clauses is satisfiable (i.e., all m clauses are satisfied), then there exists a feasible solution
of the corresponding instance of PG with 3m + n + 1 guards.

PROOF. Fix any truth assignment of the variables that satisfies the 5-OCCURRENCE-
MAX-3-SAT instance. Place one guard at w1. For each variable xk , place a guard at point
Fvar(xk) of the variable pattern if xk is false. Place a guard at T var(xk) if xk is true. For
each literal lj (ci ) in each clause, place a guard at point T lit(lj (ci )) of the literal pattern
if the literal is true. Place a guard at point F lit(lj (ci )) if the literal is false. This solution
is feasible and consists of 3m + n + 1 guards.

LEMMA 3. If there exists an ε > 0 and a feasible solution of the PG instance I ′

with 3m + n + 1 + εm guards, then there exists an assignment of the variables of the
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corresponding 5-OCCURRENCE-MAX-3-SAT instance I that satisfies at least m(1 − 4ε)

clauses.

PROOF. In the feasible solution of PG there must be at least one guard inside each literal
pattern. There also must be at least one guard inside each variable pattern. Finally, one
additional guard is needed at w1.

Now, move the guards according to the transformation given in Section 3.2. At most
εm guards see the distinguished pairs of two spike patterns belonging to different legs,
since 3m guards are inside literal patterns, n guards are inside variable patterns and one
guard is at w1. Therefore, we have at most εm additional guards.

We now set the truth values of the variables according to the transformation. For at
least n − 2εm variable patterns, there is only one guard at either T var(xk) or Fvar(xk).
For at most 2εm variable patterns, there is a guard at both points T var(xk) and Fvar(xk).
When we set the truth value of each of these 2εm variables, at most two clauses will be
unsatisfied for each variable. Therefore, we have at most 4εm unsatisfied clauses.

Now, consider the promise problem of 5-OCCURRENCE-MAX-3-SAT, where we are
given an instance of 5-OCCURRENCE-MAX-3-SAT, and we are promised that the instance
is either satisfiable or at most m(1 − 4ε) clauses are satisfiable by any assignment of the
variables. The NP-hardness of this problem for small enough values of ε follows from
the fact that 5-OCCURRENCE-MAX-3-SAT is MAXSNP-complete (see [21] and [2]).

By Lemma 2 and by the contraposition of Lemma 3, we obtain the following theorem.

THEOREM 1. Let I be an instance of the promise problem of 5-OCCURRENCE-MAX-3-
SAT, let n be the number of variables in I , and let m ≤ 5

3 n be the number of clauses in
I . Let OPT(I ) denote the maximum number of satisfiable clauses (for any assignment).
Furthermore, let I ′ be the corresponding instance of PG and let OPT(I ′) denote the
minimum number of guards needed to cover I ′. Then the following hold:

• If OPT(I ) = m, then OPT(I ′) ≤ 3m + n + 1.
• If OPT(I ) ≤ m(1 − 4ε), then OPT(I ′) ≥ 3m + n + 1 + εm.

Theorem 1 shows that our reduction is gap-preserving (see [2]). It shows that the
promise problem of PG with parameters 3m + n + 1 and 3m + n + 1 + εm is NP-hard.
Note that m ≥ n/3, since each variable appears as a literal at least once. Therefore,
unless NP = P , no polynomial time approximation algorithm for PG can achieve an
approximation ratio of

3m + n + 1 + εm

3m + n + 1
= 1 + ε

3 + (n + 1)/m
≥ 1 + ε

3 + 3(n + 1)/n
≥ 1 + ε

7
.

Thus, we have the following result:

THEOREM 2. PG is APX-hard.

Our proof works as well for PGI. To see this note that if we are given a solution of
the satisfiability instance and set the guards as indicated in Lemma 2, the guards see all
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of the interior and the boundary of the polygon. If we are given a solution of the PGI
instance and perform the transformation as given in Section 3.2, the guards still see all
of the interior and the boundary of the polygon. Therefore, we have:

THEOREM 3. PGI is APX-hard.

3.4. Inapproximability Results for VG, EG, VGI, and EGI. The proof for the APX-
hardness of VG can be copied from the corresponding proof for PG. Actually, we do
not even need the property in the constructed polygon that no three spike pattern of
three different legs intersect (see Lemma 1). Since there are no guards added in the
transformation for VG, we would get a slightly bigger constant for the inapproxima-
bility of VG than the constant for PG, if we were interested in giving explicit con-
stants.

Thus, we obtain:

THEOREM 4. VG is APX-hard.

Our proof carries over to VGI using the same arguments as for PGI. Therefore, we
have:

THEOREM 5. VGI is APX-hard.

The proof for the APX-hardness of EG follows the lines of the corresponding proof
for PG with some modifications. The literal pattern and the variable pattern are slightly
different as shown in Figure 11. Note that F lit, T lit, Fvar, and T var are edges in the literal
pattern.

The ideas of the proof for PG can now be applied here. Any solution of the EG instance
contains at least 3m + n + 1 guards. If we are given a solution of the EG instance we
can adopt the transformation procedure described in Section 3.2. Therefore, we obtain:

THEOREM 6. EG is APX-hard.

The proof works as well for EGI. Therefore, we have:

THEOREM 7. EGI is APX-hard.

Fig. 11. (a) Literal pattern for EG; (b) variable pattern for EG.
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4. Inapproximability Results for Guarding Polygons with Holes. In this section
we propose a reduction from SET COVER to PGH, analyze it, and show that it is gap-
preserving. We also show that our result carries over to the problems VGH, EGH, VGIH,
EGIH, and PGIH.

4.1. Construction of the Reduction. As a first step toward our inapproximability result
for PGH, we show how to construct an instance of PGH for every instance of SET COVER

(SC). The construction contains a triangle-shaped pattern, called spike, for each element
of the SC instance. All spikes lie on the lower segment of a large rectangle, which is
“cut” into an upper and a lower part by a barrier that contains trapezoidal holes, through
which a guard in the upper part, which corresponds to a set in the SC instance, can see
the spikes in the lower part, which correspond exactly to those elements that are in the
set.

We construct a polygon in the x–y plane; Figure 12 shows this construction. For each
set si , i = 1, . . . , m, place the point ((i − 1)d ′, y0) on the horizontal line y = y0. This
places a sequence of points from left to right, one point per set si for i = 1, . . . , m, with
d ′ a constant distance between two adjacent points. For ease of description, call the i th
point si . For each element ei ∈ E , on the horizontal line y = 0 place two points (Di , 0)

and (D′
i , 0), with D′

i = Di + d for a positive constant d and D1 ≥ 0. Arrange the points
from left to right for i = 1, . . . , n, with distances di = Di+1 − D′

i to be defined later.
Call the points also Di and D′

i , for i = 1, . . . , n.

Fig. 12. Basic construction.
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For every element ei , draw a line g through sj and Di , where sj is the first set of which
ei is a member. Also draw a line g′ through sl and D′

i , where sl is the last set of which ei

is a member.3 For simplicity, let ei also denote the intersection point of g and g′. Then
draw line segments from every sk that has ei as a member to Di and to D′

i .
Two lines connecting points Di and D′

i with points sj form a cone-like feature; the area
between these two lines will therefore be called a cone. Call the triangle Di ei D′

i a spike.
The point ei of each spike plays a special role and is therefore called the distinguished
point of the spike.

We have only constructed one part of the polygon thus far: Among all the lines
described, only the spikes and the line segments of the horizontal line y = 0 that are
between adjacent spikes are part of the polygon boundary, all other lines merely help in
the construction.

In our construction the guards of an optimum solution will have to be placed at or near
the points sj , therefore we need to make sure that a guard at sj only sees the distinguished
point ei , if the element ei is a member of the set sj . This is achieved by introducing a
“barrier” line at y = b, see Figure 12. Only line segments on the horizontal line y = b
that are outside the cones are part of the polygon boundary. We draw another barrier
line with distance b′ from the first barrier at y = b + b′. Define holes of the polygon by
connecting endpoints of line segments of the two barrier lines that belong to the same
cone-defining line. We call the area between the two lines at y = b and y = b + b′

(including all holes) the barrier. Thus, the barrier contains a small part of all cones.
As a next step in the construction of the polygon, draw a vertical line segment at

x = −d ′′, where d ′′ is a positive constant, from y = 0 to y = y0. This line segment is
part of the polygon boundary except for the segment between the two barrier lines.

Choose the coordinates (to be shown later) such that the rightmost spike is farther right
than the rightmost set, i.e., D′

n > sm (for reasons of space, we violated this condition in
Figure 12), and draw another vertical line segment from y = 0 to y = y0 at x = D′

n +d ′′,
again taking a detour at the barrier. The boundary lines of the polygon defined so far are
shown as solid lines in Figure 12. It is important to note that the cones, drawn as dashed
lines in the figures, are not part of the polygon boundary.

The thickness b′ of the barrier is defined such that all segments of all holes except
for those on the line y = b + b′ can be seen from two guards at P1 = (−d ′′, 0) and
P2 = (D′

n + d ′′, 0). To achieve this, the thickness b′ is determined by intersecting (for
each pair of adjacent holes) a line from P1 through the lower right corner (point G1 in
Figure 13) of the left hole (of the pair of adjacent holes) with a line from P2 through the
lower left corner (point G2) of the right hole as shown in Figure 13. Now, the barrier line
y = b + b′ is defined to go through the lowest of all these intersection points (point y1 in
Figure 13). (They are indeed all at the same height, by arguments with similar triangles.)

We set the parameters of the reduction as follows: Let d ′ and y0 be arbitrary positive
constants. Let d and b be positive constants as well, where d = d ′/4 and b = 5

12 y0. We let

b′ = (35/122)y0

−4l−1ml−1 + 2
∑l−1

i=0 4i mi + 2(d ′′/d) − 19
12

and Dl = −4l−1ml−1d − d + 2d
∑l−1

i=0 4i mi for l = 1, . . . , n.

3 We assume without loss of generality that each element is a member of at least two sets.
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Fig. 13. Thickness of the barrier.

4.2. Properties of the Reduction. In order for the reduction to work, it is necessary that
at no point does a guard see three or more distinguished points ei unless there is a set
sj or a pair of sets sj , sl that (together) contain(s) all of the corresponding elements.

A guard that is placed at some point with y-value between 0 and b + b′, i.e., between
the barrier and the spikes, sees at most one such distinguished point, provided the barrier
is placed such that no cones of two different elements intersect in the area below the
barrier and in the barrier.

In order to ensure that a guard that is placed at some point with y-value between b+b′

and y0 does not see three or more distinguished points unless there is a set sj or a pair of
sets sj , sl that (together) contain(s) all of the corresponding elements, we introduce the
notion of extended cones as shown in Figure 14. The extended cone is the area in the
rectangle Di , D′

i , sj + a, sj − a. Point sj − a is defined as the intersection point of the
line y = y0 with the line from D′

i through the lower right corner of the left of the two
holes which contain a part of the cone from set sj and element ei . Point sj + a is defined

Fig. 14. Extended cones.
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accordingly. It will be easy to see that points sj − a and sj + a are both at a constant
distance a from point sj (see the proof of Lemma 4).

For a guard between the two horizontal lines y = b+b′ and y = y0, in order to see the
distinguished point ei , it must lie in the area of the triangle defined by the points h1, h2,

and ei (or, of course, in the corresponding triangle of any other point sj ′ with ei ∈ sj ′ ).
In order to keep the analysis simple, we argue with the extended cones rather than the
triangles. If no three extended cones from three different elements and three different
sets intersect in this area, then it is ensured that there exists a pair of setpoints such that
each distinguished point that a guard in this area sees can also be seen from at least one
of the setpoints of the pair. (It is, of course, also possible that a single setpoint sees all
the distinguished points that a guard in this area sees).

A guard that is placed at some point with y-value less than 0, sees at most one
distinguished point, if it is ensured that no two spikes intersect.

Thus, we need to prove the following:

– No three extended cones from different elements and sets intersect.
– The barrier is such that all intersections of cones from the same element ei are below

b (to ensure that the view of the points sj is blocked appropriately) and such that all
intersections of cones from different elements are above b + b′ and such that all of
the barrier except for the line segments at y = b + b′ can be seen from at least one of
two guards at P1 and P2.

– No two spikes intersect.

No three extended cones from different elements and sets intersect

LEMMA 4. For el ∈ sl ′ , let

Dl ≥ max

(
si ′ − sl ′

si ′ − sj ′ − 2a
(Dj + d − Di ) + Di + d

)
,

where the maximum is taken over all ei ∈ si ′ and ej ∈ sj ′ , for which i < j < l and
l ′ < j ′ < i ′ holds. Then the three extended cones from el to sl ′ , from ei to si ′ and from ej

to sj ′ , with i < j < l, do not have a common intersection point.

PROOF. Assume that the positions of the elements, i.e., the values Dv , have been set for
all v < l such that no three extended cones (connecting three different sets with three
different elements) intersect. We show how to set Dl such that no three extended cones in-
tersect; see Figure 15. Let S be an intersection point with the maximum y-value among the
two extended cones connecting the elements ei and ej with the (different) points sj ′ and si ′ .

In order to ensure that our construction is feasible, S must lie in the area between y0

and the barrier. Let Sy be the y-value of S. Then Sy < y0. To see this, note that this is
equivalent to saying that sj ′ + a < si ′ − a (see Figures 14 and 15), which is a weaker
condition than sj ′ + a < sj ′+1 − a. Now, sj ′ + a < sj ′+1 − a is equivalent to 2a < d ′.
We express a as a function of y0, b, and d using the similarity of triangles. Note that
a′/d = (y0 − b)/y0 and b/y0 = a′/a. Thus, we get a = ((1 − b)/b)d. Using this result
in 2a < d ′, we obtain

b >
2

d ′/d + 2
y0,
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Fig. 15. Intersection of three extended cones.

which is equivalent to b > 1
3 y0, since d = d ′/4. This inequality for b is satisfied, since

b = 5
12 y0 > 1

3 y0.
For each set sl ′ of which el is a member, draw a line through S, determine where

it intersects the line y = 0 and let DS
l,l ′ be the x-value of this intersection point. Let

DS
l = maxl ′ DS

l,l ′ be the maximum x-value of all intersection points defined this way.
For any pair of extended cones in “inverse position” to the left of el , with which an
extended cone at el forms a “triple inversion,” compute the corresponding DS

l and let
Dmax

l be the maximum DS
l . Finally, we let Dl = Dmax

l + d to ensure that no three
extended cones have one common intersection point at some point S. Figure 15 shows
the situation for an intersection and explains the notation.

The point S is the intersection point of the lines g1 from si ′ − a to Di and g2 from
sj ′ + a to D′

j .
These two lines can be expressed with parameter t ∈ R:

g1: (1 − t)

(
si ′ − a

y0

)
+ t

(
Di

0

)
,

g2: (1 − t)

(
sj ′ + a

y0

)
+ t

(
D′

j

0

)
.

The intersection is characterized by parameters t1 and t2 for g1 and g2:

(1 − t1)y0 = (1 − t2)y0,

(1 − t1)(si ′ − a) + t1 Di = (1 − t2)(sj ′ + a) + t2 D′
j .

The first equation leads to t1 = t2 and one obtains, for t1,

t1 = si ′ − sj ′ − 2a

D′
j − Di + si ′ − sj ′ − 2a

.

We express S as

S =
(

(1 − t1)(si ′ − a) + t1 Di

y0(1 − t1)

)
.
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Let g3 be the line from sl ′ − a to S with t ∈ R as parameter:

g3: (1 − t)

(
sl ′ − a

y0

)
+ t

(
(1 − t1)(si ′ − a) + t1 Di

y0(1 − t1)

)
.

The intersection of g3 and y = 0 is characterized by parameter t3:

(1 − t3)y0 + t3(1 − t1)y0 = 0,

t3 = 1

t1
.

We let DS
l,l ′ be the corresponding x-value:

DS
l,l ′ =

(
1 − 1

t1

)
(sl ′ − a) + 1

t1
(1 − t1)(si ′ − a) + 1

t1
t1 Di

=
(

1 − 1

t1

)
(sl ′ − si ′) + Di

= si ′ − sl ′

si ′ − sj ′ − 2a
(D′

j − Di ) + Di

= si ′ − sl ′

si ′ − sj ′ − 2a
(Dj + d − Di ) + Di .

The lemma follows.

Lemma 4 implies

max

(
si ′ − sl ′

si ′ − sj ′ − 2a
(Dj + d − Di ) + Di + d

)

≤ max

(
md ′

d ′ − 2a
(Dj + d) + d

)
(∀ j < l)

≤ 4m(Dl−1 + d) + d,

where we have used a = ((1 − b)/b)d = 7
5 d and d ′ = 4d in the last step. Now, let

Dl = 4m(Dl−1 + d) + d . It is easy to see that this is consistent with our definition of
Dl , since

−4l−1ml−1d − d + 2d
l−1∑
i=0

4i mi = 4m

((
−4l−2ml−2d − d + 2d

l−2∑
i=0

4i mi

)
+ d

)
+ d.

The barrier is in good position

LEMMA 5. Any two cones that belong to the same element ei intersect only at points
with y-values at most y0(d/(d + d ′)).



Inapproximability Results for Guarding Polygons and Terrains 103

PROOF. Let ei be a member of sj and sl and sj < sl . The intersection point of the lines
g1 from sj to D′

i and g2 from sl to Di is the point in the intersection area of the two cones
that has the largest y-value. Let this value be yc.

These two lines can be expressed with parameter t ∈ R:

g1: (1 − t)

(
sj

y0

)
+ t

(
D′

i

0

)
,

g2: (1 − t)

(
sl

y0

)
+ t

(
Di

0

)
.

The intersection is characterized by parameters t1 and t2 for g1 and g2:

(1 − t1)y0 = (1 − t2)y0,

(1 − t1)sj + t D′
i = (1 − t2)sl + t Di .

The first equation leads to t1 = t2 and one obtains, for t1,

t1 = sl − sj

D′
i − Di + sl − sj

.

Since D′
i − Di = d and since sl − sj ≥ d ′, we get

yc = y0
d

d + sl − sj

≤ y0
d

d + d ′ .

LEMMA 6. Any two cones that belong to elements ei , ej , respectively, with i < j ,
intersect only at points with y-values at least y0(di/(di + md ′)).

PROOF. Let ei be a member of si ′ and let ej be a member of sj ′ , also let Di < Dj and
sj ′ < si ′ . Exactly then, the corresponding two cones intersect.

The intersection point of the lines g1 from sj ′ to Dj and g2 from si ′ to D′
i is the point

in the intersection area of the two cones with the minimum y-value. Let this value be yc.
These two lines can be expressed with parameter t ∈ R:

g1: (1 − t)

(
sj ′

y0

)
+ t

(
Dj

0

)
,

g2: (1 − t)

(
si ′

y0

)
+ t

(
D′

i

0

)
.

The intersection is characterized by parameters t1 and t2 for g1 and g2:

(1 − t1)y0 = (1 − t2)y0,

(1 − t1)sj ′ + t Dj = (1 − t2)si ′ + t2 D′
i .
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The first equation leads to t1 = t2 and one obtains, for t1,

t1 = si ′ − sj ′

Dj − D′
i + si ′ − sj ′

.

Since Dj − D′
i ≥ di and since si ′ − sj ′ ≤ md ′, we get

yc = y0
Dj − D′

i

Dj − D′
i + si ′ − sj ′

≥ y0
di

di + md ′ .

LEMMA 7. Let

b′ = bd(y0 − b)

y0(p2 − p1) − d(y0 − b)
,

where p1 and p2 are the x-values of the points P1 and P2. Then all of the barrier including
the segments of the cones except for the segments at y = b + b′ can be seen from the two
guards at P1 and P2.

PROOF. Let ei ∈ sj and let G1 and G2 be the two points where this cone intersects with
the barrier line y = b (see Figure 13). We need to find an expression for y1, which is the
y-value of the intersection point of the two lines from P1 to G1 and from P2 to G2.

We find an expression for the point G1 by calculating the intersection of the lines
from sj to Di and y = b and obtain

G1 =
(

(b/y0)(sj − Di ) + Di

b

)
.

We find an expression for the point G2 by calculating the intersection of the lines from
sj to Di + d and y = b and obtain

G2 =
(

(b/y0)(sj − Di − d) + Di + d
b

)
.

Now, we find the intersection point of the lines from P1 to G1 and from P2 to G2:

(1 − t1)

(
p1

0

)
+ t1

(
(b/y0)(sj − Di ) + Di

b

)

= (1 − t2)

(
p2

0

)
+ t2

(
(b/y0)(sj − Di − d) + Di + d

b

)
.

Again, t1 = t2 and we obtain

t1 = p1 − p2

d − bd/y0 + p1 − p2
.

Therefore,

y1 = bt1.
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y1 does not depend on Di , therefore we let b′ = y1 − b = b(t1 − 1):

b′ = bd(y0 − b)

y0(p2 − p1) − d(y0 − b)
.

If we substitute b = 5
12 y0 and p2 − p1 = −4n−1mn−1d − d + 2d

∑n−1
i=0 4i mi + d ′′ −

(−d ′′) = −4n−1mn−1d − d + 2d
∑n−1

i=0 4i mi + 2d ′′ in the equation for b′, we obtain

b′ = (35/122)y0

−4n−1mn−12
∑n−1

i=0 4i mi + 2(d ′′/d) − 19
12

.

A simple calculation shows that b′ < y0/12, if m ≥ 2 and n ≥ 2, which must be the
case since there were no intersections otherwise.

Because d = d ′/4 and because of Lemma 5, any two cones from the same element
intersect only at points with a y-value at most 1

5 y0 which is less than b. Because di ≥ md ′

for all di and because of Lemma 6, any two cones from different elements intersect only
at points with a y-value at least 1

2 y0, which is at most b + b′.

Spikes of two elements do not intersect

LEMMA 8. The spikes of any two elements do not intersect.

PROOF. Let si be the first and let sj be the last set that el is a member of. Obviously,
si < sj . The intersection point of the lines g1 from si through Dl and g2 from sj through
D′

l is the point Il . Let the x-value of this point be xl . Note that xl > Dl .
These two lines can be expressed with parameter t ∈ R:

g1: (1 − t)

(
si

y0

)
+ t

(
Dl

0

)
,

g2: (1 − t)

(
sj

y0

)
+ t

(
D′

l

0

)
.

The intersection is characterized by parameters t1 and t2 for g1 and g2:

(1 − t1)y0 = (1 − t2)y0,

(1 − t1)si + t1 Dl = (1 − t2)sj + t2 D′
l .

The first equation leads to t1 = t2 and with D′
l = Dl + d one obtains, for t1,

t1 = si − sj

d + si − sj
.

Thus, we obtain

xc = si
d

d + si − sj
+ Dl

si − sj

d + si − sj

≤ Dl
si − sj

d + si − sj
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≤ Dl
−d ′

d − d ′

= Dl
−4d

d − 4d

= 4
3 Dl ,

where the second but last step is due to d = d ′/4. Since Dl+1 = 4m(Dl + d) + d and
since we can assume that m ≥ 1, the lemma follows.

4.3. Transformation of the Solution. Given a solution of the PGH-instance, i.e., the
coordinates of r guards g1, . . . , gr , proceed as follows to obtain a solution for the SC-
instance:

For each guard gi determine the set hi of elements ej of which the guard gi sees the
corresponding distinguished point ej .

Since no three extended cones from three different elements and three different sets
intersect in the area above y = b + b′ by our construction, there exists a pair of sets
(sk, sl) for each guard gi such that hi ⊆ sk ∪ sl . Determine such a pair of sets for each
guard gi and add the sets to the solution of the SC-instance.

4.4. The Reduction is Polynomial. Note that d, d ′, y0, h, b are all constants in our
reduction. The values for b′ and for all Di are computable in polynomial time and can
be expressed with O(n log m) bits.

Therefore, the construction of the polygon can be done in time polynomial in the
size of the input SC-instance, since it only produces a polynomial number of points that
can each be computed in polynomial time and each take at most O(n log m) bits to be
expressed.

It is obvious that the transformation of the solution runs in polynomial time, since it
only involves determining whether two points see each other and finding pairs of sets
for a polynomial number of guards. (Note that if the number of guards exceeds n, the
solution is trivial.)

4.5. An Inapproximability Result for PGH. In order to prove a strong inapproximability
result, we need the following:

DEFINITION 19. The RESTRICTED SET COVER (RSC) problem consist of all SET COVER

instances that have the property that the number of sets m is less than or equal to the
number of elements n, i.e., m ≤ n.

LEMMA 9. RESTRICTED SET COVER cannot be approximated by any polynomial time
algorithm with an approximation ratio of (1 − ε) ln n for any ε > 0, unless NP ⊆
TIME(nO(log log n)).

PROOF. We know that DOMINATING SET cannot be approximated with an approxima-
tion ratio of (1 − ε) ln n for any ε > 0, unless NP ⊆ TIME(nO(log log n)), where n is
the number of vertices in the graph [4]. Consider the following reduction from DOM-
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INATING SET to RESTRICTED SET COVER: given a graph G = (V, E) with n := |V |,
which is an instance of DOMINATING SET, we construct a RESTRICTED SET COVER in-
stance by letting the vertices of G be elements and by forming a set for each vertex
that contains the vertex itself as well as its neighbors. The RESTRICTED SET COVER in-
stance thus obtained contains n elements and n sets. This is clearly a gap-preserving
reduction, since each feasible solution of the RESTRICTED SET COVER instance di-
rectly corresponds to a feasible solution (of the same size) of the DOMINATING SET

instance.

We now consider the reduction to be from RSC to PGH (rather than from SC to PGH).

LEMMA 10. Consider the promise problem of RSC (for any ε > 0), where it is promised
that the optimum solution OPT is either less than or equal to c or greater than c(1−ε) ln n
with c, n, and OPT depending on the instance I . This problem is NP-hard unless NP ⊆
TIME(nO(log log n)) (see the notion of quasi-NP-hardness in [2]). Then we have for the
optimum value OPT ′ of the corresponding PGH-instance I ′, that OPT ′ is either less
than or equal to c + 2 or greater than ((c + 2)/12)(1 − ε) ln |I ′|. More formally,

OPT ≤ c ⇒ OPT ′ ≤ c + 2,(1)

OPT > c(1 − ε) ln n ⇒ OPT ′ >
c + 2

12
(1 − ε) ln |I ′|.(2)

PROOF. The implication in (1) is trivial, since, given a solution of the RSC-instance I
of size c, we position a guard at each point sj in the corresponding PGH-instance I ′, if
the set sj is in the solution of I , and we position two additional guards at points P1 and
P2 in I ′, which see the barrier from below.

We prove the contraposition of (2), i.e.,

OPT ′ ≤ c + 2

12
(1 − ε) ln |I ′| ⇒ OPT ≤ c(1 − ε) ln n.

Observe that if we are given a solution of I ′ with k guards, we can obtain a solution of
I with at most 2k sets by performing the procedure described in Section 4.3. Therefore,

OPT ≤ 2
c + 2

12
(1 − ε) ln |I ′|(3)

≤ 2
c + 2

12
(1 − ε) ln n3(4)

≤ 2 · 3
2c

12
(1 − ε) ln n(5)

≤ c(1 − ε) ln n,(6)

where we used |I ′| ≤ n3 to get (4), which is true because the polygon of I ′ consists of n
spikes and less than nm ≤ n2 holes (see the definition of RSC). Therefore, the polygon
consists of less than k(n2 + n) points, where k is a small constant. Therefore, |I ′| ≤ n3

for n large enough. We used 2c ≥ c + 2 to get to (5).
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Fig. 16. Polygon for VG and EG.

Lemma 10 completes the proof of Theorem 8.

THEOREM 8. PGH cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the number of the
polygon vertices, unless NP ⊆ TIME(nO(log log n)).

4.6. Inapproximability Results for VGH and EGH. A slight modification of the poly-
gon as indicated in Figure 16, where b′′ = y0 + b′, allows us to prove the corresponding
theorems for VGH and EGH.

THEOREM 9. VGH cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1−ε)/12) ln n for any ε > 0, where n is the number of polygon
vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. The proof is almost identical to the proof for PGH, except that instead of two
additional guards at P1 and P2 we have a third additional guard at P3 (see Figure 16).
This additional guard means that we need to replace c + 2 by c + 3 in the proof of
Lemma 10. In addition, we get a slightly stronger condition, namely 2c ≥ c + 3, to
obtain the inequality at (5).

THEOREM 10. EGH cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1−ε)/12) ln n for any ε > 0, where n is the number of polygon
vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. The proof is almost identical to the proof for PGH with the additional infor-
mation from the proof of Theorem 9. Note that in the case of EG all guards are edges.
The proofs carry over effortlessly.

4.7. Inapproximability Results for PGIH, VGIH, and EGIH

THEOREM 11. PGIH, VGIH, and EGIH cannot be approximated by a polynomial time
algorithm with an approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the
number of polygon vertices, unless NP ⊆ TIME(nO(log log n)).
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PROOF. All proofs which lead to Theorems 8–10 carry over. Note that for a lemma
corresponding to Lemma 10, which is the most crucial part in the proof, we can still,
virtually without change, prove (1) and (2).

5. An Application: Guarding Terrains. We prove inapproximability results for sev-
eral terrain guarding problems by proposing reductions from RESTRICTED SET COVER,
all of which are based on the reduction proposed for PGH.

THEOREM 12. PGT cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the number of terrain
vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. We reduce RESTRICTED SET COVER to PGT. In a first step, we construct the
same polygon with holes as constructed in the corresponding reduction for PGH. We
then triangulate this polygon arbitrarily, and construct a terrain, by letting the interior
of the polygon have height 0 and the exterior (including the holes in the barrier) have
height h′, for a positive constant h′. To make the terrain finite, we cut off the exterior of
the polygon with a generous bounding box that is triangulated as well. The terrain we
obtain has vertical walls, which is for reasons of simplicity only. The terrain can easily
be modified to have steep, but not vertical, walls.

The proof then carries on just as for PGH. The setpoints sj are assumed to be at height
h′, as are points P1 and P2; the distinguished points ei , however, are at height 0.

THEOREM 13. VGT cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the number of terrain
vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. Adopt the proof of Theorem 12 for PGT with the modifications of the con-
structed polygon as indicated in Theorem 9 for VGH.

THEOREM 14. FHT cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the number of terrain
vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. Proceed as in the proof for Theorem 12, and let h, the fixed height, where the
guards can be placed, be equal to h′, the height of the exterior of the polygon.

THEOREM 15. PGTR, VGTR, and FHTR cannot be approximated by a polynomial time
algorithm with an approximation ratio of ((1 − ε)/12) ln n for any ε > 0, where n is the
number of terrain vertices, unless NP ⊆ TIME(nO(log log n)).

PROOF. Proceed as in the proofs for Theorems 12–14. However, triangulate the poly-
gon in such a way that each spike is triangulated into a single triangle. Note that the
spikes take over the role of the distinguished points. A solution for RSC with k sets
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can still be easily transformed into a solution of the terrain guarding instance with k
guards. Furthermore, a solution of the terrain guarding instance with k guards can still
be transformed into a solution of the RSC instance with at most 2k sets, because three
different cones from three different elements and three different sets do not intersect in
the area above the barrier, because this is a weaker condition than the corresponding
condition with extended cones.

6. Approximability Results. Surprisingly few approximation algorithms are known
for art gallery problems and terrain guarding problems.

It is known, however, that VGI, EGI, VGIH, and EGIH are approximable with a
ratio of O(log n), where n is the number of polygon vertices [13]. The corresponding
approximation algorithms divide the interior of the polygons into “basic” triangles that
are either completely visible or invisible from any vertex- or edge-guard. The problem
is then transformed into an instance of SET COVER, which can be approximated with
a logarithmic ratio by a greedy algorithm, which consists of recursively adding to the
solution the set that covers a maximum number of elements not yet covered and achieves
an approximation ratio of ln n +1 [14]. These algorithms can be easily modified to work
for VG, EG, VGH, and EGH as well.

No sophisticated approximation algorithms are known for PG, PGH, PGI, and PGIH,
except for a restricted version of PGI [1]. In fact, it is not even known if the corresponding
decision problems are in NP. A trivial approximation algorithm for PG, PGH, PGI, and
PGIH simply returns all n vertices of the polygon as a (feasible) solution. This algorithm
achieves an approximation ratio of n, because there is at least one guard needed in a
feasible solution. Note that this ratio might be improved slightly for PGI by applying
an algorithm that places �n/3� guards that together see all of the interior of the polygon
(see [25] for details); this could be done similarly for PGIH with another algorithm (see
[25] for details), but the approximation ratio remains O(n).

For terrain guarding problems, we have the following results.

THEOREM 16. FHTR can be approximated by a polynomial time algorithm with a ratio
of O(log n).

PROOF. In order to prove the theorem, we construct an SC-instance for a given FHTR-
instance as follows: Each triangle is an element of the SC-instance. For each triangle
determine the area on the plane z = h from where the triangle is fully visible. This area
is a polygon of descriptional complexity O(n2), that can be computed in time O(n4)

by interpreting the points of the polygon as special points of an arrangement. At each
point, where two of these polygons intersect, determine which triangles are visible from
this point and define the set of visible triangles as one set for SC. There are O(n6)

such intersections. Now solve the SC-instance approximately, by applying the greedy
algorithm for SC. The solution obtained is not more than ln n + 1 times larger than the
optimum solution for SC [14].

To see that this reduction is approximation-ratio preserving, consider that the n poly-
gons partition the plane z = h into cells. Observe that the set of visible triangles is the
same throughout the area of a cell. On the boundary of the cell, however, a few more
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triangles might be visible since the boundary may be part of the visibility area of another
triangle. Therefore, any solution of the FHTR-instance can be transformed to a solution
of the SC-instance by moving guards that are in the interior of a cell to an appropriate
intersection point on the boundary of the cell.

THEOREM 17. VGTR can be approximated by a polynomial time algorithm with a ratio
of O(log n).

PROOF. Similarly as in the proof of Theorem 16, we construct an SC-instance for a
given VGTR-instance. Each triangle in the terrain is an element of the SC-instance. We
determine at each vertex in the terrain, which triangles are completely visible from a
guard at the vertex and define the set of visible triangles as one set for SC. We then apply
the greedy algorithm to the SC-instance and obtain a solution which is not more than a
logarithmic factor away from the optimum.

No sophisticated approximation algorithms are known for PGT, PGTR, VGT, and
FHT. A trivial approximation algorithm for VGT, PGT, and PGTR simply puts a guard
at each vertex of the terrain, thus achieving an approximation ratio of n, since at least one
guard is always needed. A trivial approximation algorithm for FHT with approximation
ratio n places a guard above each vertex of the terrain at height h. Again, the approxi-
mation ratios could be improved by a constant factor, since there exists an algorithm [5]
that always places �3n/5� (vertex-)guards on a terrain that together see all of the terrain.
For FHT, we could also reduce the approximation ratio to n/2 by determining whether
height h is large enough such that the whole terrain can be seen from one single guard
at some point at height h. The position of such a guard can be computed in linear time
using linear programming (mentioned in [26] as the problem of computing the lowest
watchtower). An approximation algorithm for FTH could return the position of such a
guard and if no such guard exists, it would proceed as in the trivial algorithm. However,
the approximation ratios remain O(n) for all four problems.

7. Conclusion. Table 1 gives an overview of the known results for the problems stud-
ied. The entries in the “upper bound” column are the smallest approximation ratios for
the corresponding problems, which are achieved by known polynomial time algorithms.
The entries in the “lower bound” column are the largest approximation ratios known,
which cannot be achieved by polynomial time algorithms. The entries in the “unless”
column show what the existence of polynomial time algorithms with better ratios than
the ones given in the “lower bound” column would imply.

All our logarithmic inapproximablity results can actually also be proved under the
weaker assumption that NP 
= P , however, with a slightly smaller factor than 1−ε, since
DOMINATING SET and therefore also RESTRICTED SET COVER cannot be approximated
with an approximation ratio of c ln n for some c > 0 [3], [4], [22].

Table 1 shows that our inapproximability results are optimum up to constant factors
for VGH, EGH, VGIH, EGIH, VGTR, and FHTR.

Thus, a fair amount of work remains to be done. One important issue is to find
nontrivial approximation algorithms with significantly better approximation ratios than
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Table 1. Summary of results.

Problem Upper bound Lower bound Unless

VG O(log n) [13] 1 + ε for some ε > 0 NP = P
EG O(log n) [13] 1 + ε for some ε > 0 NP = P
PG O(n) 1 + ε for some ε > 0 NP = P
VGI O(log n) [13] 1 + ε for some ε > 0 NP = P
EGI O(log n) [13] 1 + ε for some ε > 0 NP = P
PGI O(n) 1 + ε for some ε > 0 NP = P
VGH O(log n) [13] 1−ε

12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

EGH O(log n) [13] 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

PGH O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

VGIH O(log n) [13] 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

EGIH O(log n) [13] 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

PGIH O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

VGT O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

PGT O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

FHT O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

VGTR O(log n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

PGTR O(n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

FHTR O(log n) 1−ε
12 ln n for any ε > 0 NP ⊆ TIME(nO(log log n))

O(n) for the problems, for which only approximation algorithms with ratio O(n) are
known. Of course, one could also try to improve the corresponding inapproximability
results.

Another problem is either to prove that VG, EG, VGI, and VGI cannot be approx-
imated with some logarithmic ratio or to propose approximation algorithms for these
problems with constant ratio.
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